Фрикционные элементы и детали сцепления

Фрикционные накладки работают в очень сложных условиях динамических и тепловых нагрузок. Их износ в настоящее время лимитирует общий срок службы ФС.

Материалы фрикционных накладок можно разделить на две группы: композиционные на основе полимеров; порошковые.
Композиционные материалы на основе полимеров представляют собой многокомпонентную композицию, содержащую основу, теплостойкую арматуру и наполнитель. Основу в таких материалах составляют связующие: каучуки, смолы и их комбинации. Чаще применяют фенолформальдегидные и анилинформальдегидные модифицированные смолы, различные натуральные и синтетические каучуки и их комбинации, формальдегидные модифицированные смолы, различные натуральные и синтетические каучуки и их комбинации.

Наполнители регулируют рабочие и технологические свойства материала. Их разделяют на металлические (медь, бронза, латунь, цинк, алюминий, свинец, железо, титан и другие металлы и соединения в виде порошков, стружки или проволоки),неметаллические (графит, углерод, кокс, сера и др.), органические, например скорлупа ореха кешью. Каучуково-смоляная основа обладает недостаточно высокими механическими свойствами, особенно при повышенных температурах. Все материалы на полимерной основе содержат теплостойкую арматуру: асбест, волокна, вату и др. Этот компонент во многом определяет свойства и технологию изготовления материала, и поэтому он часто отражается в названии. Так, материалы, армированные асбестом, называют фрикционными асбополимерными материалами (ФАПМ).
Материалы, в которых асбест заменен на другую теплостойкую арматуру, называют фрикционными безасбестовыми полимерными (ФБПМ). Применение ФБПМ в ФС было связано, в первую очередь, в связи с обнаруженной концерогенностью асбеста, отчего в ряде стран последовал запрет на его применение на транспорте. В настоящее время в качестве заменителя асбеста применяют синтетические арамидные волокна типа “Кевлар”, стекло, керамику, борные и углеродные соединения, базальт, слюду, валлостонит и металлическое стальное волокно. Наиболее широко используются арамидные волокна типа “Кевлар”. При этом незначительная добавка арамидных волокон в ФАПМ (до 5%) повышает износостойкость фрикционной накладки примерно в 1,5 раза.

Размеры фрикционных накладок нормированы ГОСТ 1786. Толщина новой накладки порядка 3...5,5 мм. Накладки выполняются в виде целого кольца, либо в виде усеченных секторов. Иногда на поверхности накладки выполняют вентиляционные канавки для охлаждения поверхности трения и удаления продуктов износа.

Порошковые фрикционные материалы выполняют на медной основе (62...71 % меди) или на железной основе (60...65% окиси железа) с добавлением наполнителей - оксида кремния (для повышения износостойкости), барита и графита (для стабилизации фрикционных свойств) и др.

Наибольшее распространение получили порошковые материалы на медной основе, так как вызывают меньший износ контртел, чем порошковые материалы на железной основе.

Накладки из порошкового материала весьма хрупкие. Поэтому их всегда применяют совместно со стальной подложкой - основанием ведомого диска, или отдельной пластины - подложки, которая затем приклепы-вается к основанию ведомого диска.

Ведущие диски (нажимные и промежуточные), как наиболее нагреваемые детали ФС изготовляют достаточно массивными для поглощения и рассеяния теплоты. Нажимной диск ФС должен быть достаточно жестким, чтобы он при нагревании не коробился и обеспечивал хорошее прилегание к фрикционным накладкам ведомых дисков. В качестве материала ведущих дисков чаще применяют серые чугуны (СЧ 18, СЧ 21, СЧ 22, СЧ 24), которые по сравнению со сталью обладают более высокой износостойкостью и меньше изнашивают фрикционные накладки.

Ведущие диски должны вращаться с маховиком двигателя и иметь возможность перемещаться в осевом направлении. При этом направляющими устройствами служат выступы, шипы, зубья, пальцы, шпоночные соединения и тангенциальные пружины, равномерно располагаемые по окружности. Выступы нажимного диска, входящие в пазы кожуха ФС, обеспечивают их надежное соединение (рис. 3.12,а). Однако в данной конструкции вследствие значительного трения в соединении существенно увеличивается усилие выключения ФС.

В двухдисковых ФС ведущие диски иногда перемещаются вдоль пальцев, закрепленных на маховике двигателя (рис. 3.12,6). Ведущие диски могут соединяться с маховиком при помощи шлиц, шипов (рис. 3.12,в) или направляющих сухарей, запрессованных в маховик (рис. 3.12,г). Наиболее перспективно соединение ведущих дисков ФС с маховиком двигателя при помощи упругих тангенциальных пластин (рис. 3.6,6), обеспечивающих их перемещение без потерь на трение.
Кожух ФС может быть штампованным или литым. Для изготовления штампованного кожуха используется углеродистая конструкционная сталь типа 08кп толщиной 2...7 мм. Литой кожух изготовляют из серого чугуна.

ФС с литым кожухом обладает повышенной жесткостью, что обеспечивает стабильные характеристики механизма их отводки. Однако их масса на 20...30 % больше массы аналогичного штампованного кожуха. Поэтому в современных ФС наибольшее распространение получили штампованные кожухи.

Отвод нажимного диска при выключении ФС с винтовыми цилиндрическими и с неразрезной тарельчатой пружиной осуществляется рычажным механизмом отвода. Число отжимных рычагов ФС колеблется от трех до шести, а их передаточное число - от 3,5 до 6,5. Чаще всего применяют кованые и штампованные рычаги. Преимущество штампованных рычагов заключается последующей закалкой до 56...62 HRC. Для кованых рычагов применяют в их меньшей массе. Для изготовления штампованных рычагов применяют стали типа 08кп с цианированием на глубину 0,3...0,5 мм и сталь 40-50.

Борьба с механическими потерями в механизме отвода нажимного диска обусловила большое разнообразие соединений отжимных рычагов с кожухом и нажимным диском (рис. 5.14). На рис. 5.14,а механизм отвода нажимного диска состоит из трех корытообразных отжимных рычагов 6, упоров 5, упорного кольца 8, отжимных болтов 4, регулировочных гаек 3 с шайбами 2 и пружин 7. Для обеспечения равномерного отвода нажимного диска 1 при выключении ФС используется упорное кольцо 8, прижатое к рычагам 6 пружинами 7.

Все сопряжения этого механизма работают без смазки с трением скольжения, что приводит к большим потерям на трение, изнашиванию сопрягаемых деталей и частым регулировкам в эксплуатации. Этих недостатков в значительной степени лишена простая и надежная конструкция, представленная на рис. 3.13,6. Одна опора рычага 9 выполнена на игольчатом подшипнике 10, а другая состоит из ролика 12, перекатывающегося по неподвижной оси 11, установленной на вилке 13, соединенной с кожухом 15 болтом 14. Роль упора рычага выполняет регулировочный винт 16.

Одна из наиболее распространенных и надежных конструкций, имеющая относительно небольшие потери на трение, показана на рис. 3.13,б. Здесь обе опоры рычага 9 имеют игольчатые подшипники 10. Поворот рычага 9 при выключении и включении ФС осуществляется вокруг оси 11, установленной в вилке 13. Положение рычагов относительно нажимного диска 1 регулируется гайкой 18 и фиксируется пружиной 17, размещенной между вилкой 13 и кожухом 15.